APOMorphine infusion and AMYloid deposition in Parkinson’s disease (APOMYL): preliminary clinical and amyloid imaging data

Daniel J van Wamelen1,2, Marios Politis3, Dag Aarsland4, Per Odin4, Teus van Laar5, Tove Henriksen5, Ben Corcoran6, Gillian Vivian7, Miriam Parry1,2, Nicola Mulholland8, Kalliay Chaudhuri1,2

1. Parkinson Foundation Centre of Excellence, King’s College Hospital, London United Kingdom; 2. King’s College London, Institute of Psychiatry, Psychology & Neuroscience, department of basic and clinical neurosciences, London United Kingdom; 3. King’s College London, Department of Old Age Psychiatry, London United Kingdom; 4. University of Lund, Faculty of Medicine, Lund Sweden. 5. University Medical Centre Groningen, department of Neurology, Groningen the Netherlands; 6. Bispebjerg Hospital, Copenhagen University, department of Neurology, Copenhagen Denmark; 7. King’s College Hospital, department of nuclear imaging, London United Kingdom.

Objective
To explore the potential effects of chronic treatment with Apomorphine on reducing brain Amyloid-β (Aβ) deposition in Parkinson’s disease (PD).

Background
- Majority of PD patients will develop functionally significant cognitive decline and Aβ plaque deposits have been implicated as a major contributing factor3.
- In a transgenic rodent model of Alzheimer disease, treatment with Apomorphine induced a decrease in intraneuronal Aβ and a simultaneous improvement in cognitive functioning4.
- In PD patients there is some evidence to suggest that Apomorphine may have a beneficial effect on Ab where it was shown that in cognitively normal PD patients, ante-mortem exposure to Apomorphine significantly reduced cerebral Aβ deposition5.

Methods
- 11 PD patients on long-term Apomorphine treatment underwent cerebral Amyloid PET scanning. Five non-demented PD patients not on Apomorphine treatment served as a control group.
- For each subject the following demographic data were recorded: age, disease duration, Hoehn and Yahr stage (HY), Levodopa equivalent dose (LED), Scales for Outcome in Parkinson’s disease (SCOPA).
- The primary outcome measure in this study was cerebral Aβ burden (scored as absent – low – moderate – high).
- Secondary outcome measures consisted of Mini Mental State Examination (MMSE), Non Motor Symptoms Scale (NMSS), Hospital Anxiety and Depression scale (HADS) and PD Sleep Scale (PDSS) scores.
- Chi-square test was used to analyse the primary outcome, and Wilcoxon signed-rank test for analysis of the secondary outcomes. This study was approved by a local Research Ethics Committee in the United Kingdom (REC 17/WM/0287; IRAS 214953).

Results
- PD patients on continuous Apomorphine infusion had been on this treatment for 51 [10-180] months (n=11).
- There were no differences in baseline demographics, LED, or motor scores (p>0.10) compared to patients not on Apomorphine (n=5) (Table).
- There were no differences in baseline demographics, LED, or motor scores (p>0.10) compared to patients not on Apomorphine (n=5) (Table).
- There were no group differences in MMSE scores, but we identified lower depression scores using the HADS in patients receiving long-term Apomorphine treatment (p=0.048).

Conclusions
Although open label, this study provides the world-first real-life evidence that Apomorphine infusion may be protective against cerebral Ab accumulation in PD. Reducing cerebral Ab has the potential to improve cognitive function in PD and enable more widespread use of advanced therapies. Future research should focus on a trial with PD patients with positive Aβ imaging and/or reduced cerebrospinal Ab levels and Ab-based therapy (Apomorphine) to reduce cognitive burden.

References

Acknowledgements: This poster represents research funded by Britannia Pharmaceuticals who had no role in the study design and execution, nor in the data analysis. DW is partly funded by a fellowship grant from Britannia Pharmaceuticals. Views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.